3z^2=33

Simple and best practice solution for 3z^2=33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3z^2=33 equation:



3z^2=33
We move all terms to the left:
3z^2-(33)=0
a = 3; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·3·(-33)
Δ = 396
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{396}=\sqrt{36*11}=\sqrt{36}*\sqrt{11}=6\sqrt{11}$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{11}}{2*3}=\frac{0-6\sqrt{11}}{6} =-\frac{6\sqrt{11}}{6} =-\sqrt{11} $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{11}}{2*3}=\frac{0+6\sqrt{11}}{6} =\frac{6\sqrt{11}}{6} =\sqrt{11} $

See similar equations:

| 11,400-9x=23 | | 6y=5;y= | | 15=2h+3 | | 3(-6x+4)=84 | | 11,400+9x=23 | | s^2+25=256 | | -s+(-6)=(-1) | | 5(4x+1)-5=120 | | -11x+2=+5 | | -4+(n+4)/5=-6 | | s+5=256 | | 2x+3+8x-15=180 | | 19x-(6x-8)=73 | | 18=12-1.5p/0.5 | | -6(x-1)-5x=61 | | n/2+7=5 | | (s-5)^2=256 | | 12/9/5+12x5= | | 5x-49=-34 | | 5x-45=-3/2x+7 | | 16=(n+6)/2+5 | | 40+8x=4(2x+4)-6 | | K+2+5k=14 | | 12/9/5+12x5=1,3 /5+60=0,26+60=60,26 | | 3/4=y/28 | | -23=-v/5 | | 17=2n+3 | | f+3∏=7∏ | | 10,595+26x=23 | | 11+2g=19 | | -6-6x-4=-10 | | -9+4r=4r=-3-6 |

Equations solver categories